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A B S T R A C T  

Background: The maximum payoff is always the wish of a successful business person, and it is possible only 

when the risk is minimized and they maximize their gain. Even now, it is a big challenge for financial managers 

of different investors to predict the minimized risk values in a random environment. Specifically, the stock 

exchange is a good example of option pricing. Option pricing theory is very important to companies and 

companies because it estimates the fair value of options that will be used to design various future pricing 

strategies. 

Purpose of the Study: The purpose of the study is to predict risk-free prices for two stocks by using modified 

Black-Scholes partial differential equations in the fractional time sequence for two stocks that have been 

worked on very little or not at all before. 

Finding: The present study finds out that the Samudu Transformation method have a significant role to get 

the better solution of two dimensional time fractional modified Black-Scholes partial differential equation to 

make better predication of company shares selling and purchasing. 

Value/Implications: This paper provides a new solution for research scholars, bankers, practitioners, and 

government policy-making departments on how the risk free rates for two-dimensional stocks may be obtained. 

Finance managers play a critical role in the advancement of the country. 
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1. RESEARCH BACKGROUND 

There are many researchers who gave different methods to evaluate solutions of the BS-Model for only one-

dimensional PDE. These are analytical and numerical methods that demonstrate the solutions in the form of 

values of pricing options. Such analytical methods are the Laplace Adomain Decomposition Method, Natural 

Transformation method, Homotopy perturbation method, Adomain decomposition method, projected 
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Differential Transformation method, and Alzaki Transformation method, etc., while numerical methods are 

the Finite difference method, Finite element method, and Haar Wavelet method. But in this study, we are the 

first one to use the application of the SAMUDU TRANSFORMS METHOD to investigate the analytical 

solution of the 2-Dimensional, Time Fractional-ordered BS-Model. It consists of two different assets in 

Liouville-Caputo Fractional derivative form for the options pricing. The Samudu Transform provides the value 

of pricing options in the form of explicit solutions in convergent infinite series. This study consists of a new 

methodology, new concept, and new vision to evaluate the option pricing of the 2-Dimensional, time-

fractional-ordered Black-Sholes Model for two stocks. 

Statement of the Problem 

The primary goal of this thesis is to investigate the use of new well-known and practical integral transform 

methods, such as the Sumudu Transform, to evaluate option pricing of the Fractional Order Black Sholes 

Model for stock(s). 

2. LITERATURE REVIEW 

According to the research of Guillaume (2019), option pricing is regarded as an effective solution to various 

pricing problems in global financial markets. The scope of option pricing is very important for local and 

international commercial and economic activities because it provides a method to predict asset prices in any 

financial market.  

Boer (2019) believes that every entrepreneur is seeking to maximise the utility and benefits of doing business. 

However, this can only be achieved by reducing risks and increasing business activities. For example, the stock 

market can be viewed as a business platform with highly unpredictable and uncertain stock prices. However, 

using the Black-Scholes PDE model can help achieve risk-free pricing in these regions. 

Guillaume (2019) believes that the fractional financial business model is expressed in the random PDE in order 

to manage changes, achieve higher accuracy, achieve greater tolerance, and learn the nature of financial 

markets. The Black-Scholes model is widely used to predict option prices. According to this model, instability 

is not eliminated. 

According to the research of Moutsinga (2018), the valuation of stocks and options is very important in the 

financial markets. Over time, the use of derivatives has increased because they provide useful solutions to 

various mathematical models that help solve complex financial problems. and predict the behaviour of 

financial markets. The score calculation serves as a link between the model and the financing of the business 

solution. 

Esekon (2016) believes that option pricing usually uses some models, among which the Black-Scholes 

mathematical model is very simple and robust. various exchanges, financial markets, and complex production 

issues. However, it is also very important  to know that this model can be used as a reference for future finances, 

because it is the first model that helps predict options and implied volatility.  

According to Rubinstein (1994), plenitude kurtosis is related to determining insecurity for the S&P 500. 

Shimko (1993) concluded in his ponders that induced conveyances of S&P 

500 records are conflictingly leptokurtic and inclined. By Jackwerth (1996), it appears that 

lognormal apportionments are connected within the scattering of the S&P 500. Before 

1987, it deteriorated to see things like negative skewness and leptokurtosis. 

Geske and Roll (1984) examined that there's an unsteady inclination in both the cash and 

outright money choices at a special time. Geske and Roll (1984) concluded that cash and time inclination can 
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be distinguished with inappropriate constraint conditions, while the issue of unusualness slant may result 

from botches in performing estimation. 

Galai (1977) believes that the BS model reveals that the speculative moment of instability has to be eased. 

Galai's (1977) findings are comparable to Geske's (1977) findings (1979). According to MacBeth (1980), the 

unpredictability of the hidden means that when there is an increase in stock value, the odds of danger become 

less. Beckers (1980) used Black-Scholes suspicion on the S&amp;P 500 record alternative. 

In this article, the method of Samudu transformation is used for the demonstration of a systematic solution of 

the two-way time-division BS model, which is composed of two unique assets. This conversion gives the value 

of the put option as an explicit solution in the form of a convergence series. In the Laplace perturbation method, 

the Laplace transform method is applied in the first stage, and then the homotopy method is applied. It is 

feasible, but in the Samudu transformation method, a solution can be found without much work. The solution 

that is taken in the Laplace homotopy is similar to this method. The next part will introduce the methods to 

solve the two assets of the BS financial model. 

3. METHODOLOGY 

Let us take the following PDE: 

𝐷𝛼 𝜓 (𝑚, 𝑛, 𝑜) +  ⎿𝜓(𝑚, 𝑛, 𝑜) + 𝑁𝜓(𝑚, 𝑛, 𝑜) =  𝑍 − − − −(1) 

Where    𝑗 − 1 <∝≤ 𝑗;        𝑗 ∈ 𝑁 

which goes  to: 

𝜓(𝑚, 𝑛, 0) =  𝜓0 (𝑚, 𝑛) 

Where 𝐿 = LDO (It stands for Linear Differential operator 

            𝑁 = NLDO (It stands for Non -Linear Differential operator) 

here, because of equation 1, the transformation for 𝜓(𝑚, 𝑛, 𝑜) can be find out as: 

𝑆[𝐷𝛼  𝜓 (𝑚, 𝑛, 𝑜)] = 𝑠[ 𝜓(𝑚, 𝑛, 𝑜) − ⎿𝜓(𝑚, 𝑛, 𝑜) − 𝑁𝜓(𝑚, 𝑛, 𝑜) +  𝑍 − − − − − − − (2) 

𝑆[𝐷𝛼  𝜓 (𝑚, 𝑛, 𝑜)] = 𝑏−∝𝑠[𝜓(𝑚, 𝑛, 𝑜) − ∑ 𝑏−∝+𝑘

𝑗−1

𝑘=0

 
𝜕𝑘

𝜕𝑡𝑘
 𝜓(𝑚, 𝑛, 0) 

If  ∝< 1, setting 𝑗 = 1 

𝑆[𝐷𝛼  𝜓 (𝑚, 𝑛, 𝑜)] = 𝑏−∝𝑠 𝜓(𝑚, 𝑛, 𝑜) − 𝑏−∝ 𝜓(𝑚, 𝑛, 0) 

𝑏−∝𝑠 𝜓(𝑚, 𝑛, 𝑜) − 𝑏−∝ 𝜓(𝑚, 𝑛, 0) = 𝑠 [𝑍 − ⎿ 𝜓(𝑚, 𝑛, 𝑜) − 𝑁𝜓(𝑚, 𝑛, 𝑜) 

𝑠 𝜓(𝑚, 𝑛, 𝑜) = 𝜓(𝑚, 𝑛, 0) + 𝑏−∝𝑠 [𝑧 − ⎿ 𝜓(𝑚, 𝑛, 𝑜) − 𝑁𝜓(𝑚, 𝑛, 𝑜) 

Here we need to implement Inverse Sumudu Transform: 

𝑠 𝑠−1𝜓(𝑚, 𝑛, 𝑜) = 𝑠−1 𝜓(𝑚, 𝑛, 0) + 𝑠−1{𝑏∝𝑠 [𝑍 − ⎿ 𝜓(𝑚, 𝑛, 𝑜) − 𝑁𝜓(𝑚, 𝑛, 𝑜)]}  

Now we need to call Inverse property of S.T(Samudu Transform) 

 𝐼∝ [ℎ(𝑚, 𝑛, 𝑜)] = 𝑠−1[𝑏∝𝑠(ℎ(𝑚, 𝑛, 𝑜)]  

here is the need of  Integral Property of S.T implementation on third equation: 

𝜓(𝑚, 𝑛, 𝑜) = 𝜓0(𝑚, 𝑛) + 𝐼∝ [𝑍 − ⎿ 𝜓(𝑚, 𝑛, 𝑜) − 𝑁𝜓(𝑚, 𝑛, 𝑜) − − − − − (4) 
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The solution of PDE in form of infinite convergent series is expressed by samudu transform as mentioned 

below:  

    𝜓(𝑚, 𝑛, 𝑜) = 𝜓0(𝑚, 𝑛) + ∑
ℎ𝑗(𝑚, 𝑛)𝑜𝑗∝

Γ(1 + 𝑗 ∝)

∞

𝑗=1

 

Where  

𝜓0(𝑚, 𝑛) = ℎ0(𝑚, 𝑛) = ℎ0 

ℎ1 = 𝑍 − ⎿(ℎ0) − 𝑁(ℎ0)] 

ℎ2 = 𝑍 − ⎿(ℎ1) − 𝑁(ℎ1)] 

ℎ3 = 𝑍 − ⎿(ℎ2) − 𝑁(ℎ2)] 

  ⋮                         ⋮ 

ℎ𝑗 = 𝑍 − ⎿ ℎ(𝑗) − 𝑁[ℎ(𝑗)] 

Since the non-linear PDE is also a two stocks fractional order black sholes model, can also be solved by 

sumudu integral transform. The famous BS equation is written below. 

𝜕∝𝐶

𝜕𝑡∝
+  

𝜎1
2

2
𝑆1

2  
𝜕2𝐶

𝜕𝑆1
2 +  

𝜎2
2

2
𝑆2

2  
𝜕2𝐶

𝜕𝑆2
2 +  𝑟𝑆1

𝜕𝐶

𝜕𝑆1
+  𝑟𝑆1

𝜕𝐶

𝜕𝑆1
+ 𝑟𝑆2

𝜕𝐶

𝜕𝑆2
+ 𝑝 𝑆1𝑆1𝜎1𝜎2  

𝜕2𝐶

𝜕𝑆1𝜕𝑆2
− 𝑟𝐶 = 0 

Investor's pay-off relation: 

               𝑐(𝑆1, 𝑆2 ,𝑜)  = max  (𝑤1  𝑆1 + 𝑤𝑆2 −  𝑘 , 0)                (European) 

P(𝑆1, 𝑆2 ,𝑜)  = max  (𝑤1  𝑆1 + 𝑤𝑆2 −  𝑘 , 0)             (American) 

Where 

C= European  

P = American  

𝑆1 = asset 1 cost share 

𝑆2 = asset 2 cost share 

p= correlation coefficient among cost of shares of asset 1 and asset 2 

𝜎1= cost volatility 1 

𝜎2= cost volatility 2 

K = Strike cost  

𝑤1= asset 1 investment properties 

𝑤2= asset 2 investment properties 

We can consider the substitution method to simplify the forth equation 

𝑏 = 𝑙𝑛𝑆1 −  ( 𝑟 − 
1

2
𝜎1

2) 𝑜 

𝑑 = 𝑙𝑛𝑆2 − ( 𝑟 −  
1

2
𝜎2

2) 𝑜 

𝜕𝐶

𝜕𝑆1
=  

𝜕𝐶

𝜕𝑑
 

𝜕𝑏

𝜕𝑆1
                                      

𝜕𝐶

𝜕𝑆2
=  

𝜕𝑐

𝜕𝑑
 

𝜕𝑏

𝜕𝑆2
c 

 

  
𝜕𝐶

𝜕𝑆2
=  

1

𝑆2
 
𝜕𝐶

𝜕𝑑
… . . . . . (2) (1) … … …

𝜕𝐶

𝜕𝑆1
=  

1

𝑆1
 
𝜕𝐶

𝜕𝑏
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𝜕2𝐶

𝜕𝑆1
2    =  

𝜕

𝜕𝑆1
( 

𝜕𝐶

𝜕𝑏
) 

=
1

𝑆1
=  

𝜕

𝜕𝑆1
( 

𝜕𝐶

𝜕𝑏
) +

𝜕𝐶

𝜕𝑏

𝜕

𝜕𝑆1
( 

1

𝑆1
) 

=
1

𝑆1
=  

𝜕

𝜕𝑏
( 

𝜕𝑐

𝜕𝑏
) 

𝜕𝑏

𝜕𝑆1
− 𝑆1

2  
𝜕𝐶

𝜕𝑏
 

=
1

𝑆1
2  

𝜕2𝐶

𝜕𝑏2
− 

1

𝑆2
 
𝜕𝐶

𝜕𝑏
  

 

 

 

In the same manner 

𝜕2𝐶

𝜕𝑆2
2 =

1

𝑆2
2 [

𝜕2𝐶

𝜕𝑑2
−   

𝜕𝐶

𝜕𝑑
] − − − − − (𝑖𝑖𝑖) 

            
𝜕𝐶

𝜕𝑆1
=  

1

𝑆1
 
𝜕𝐶

𝜕𝑏
 

 

𝜕𝐶

𝜕𝑆2
(

𝜕𝐶

𝜕𝑆1
) =  

𝜕

𝜕𝑆2
 (

1

𝑆1
−

𝜕𝐶

𝜕𝑏
) 

                    =  
1

𝑆1

𝜕

𝜕𝑆2
 
𝜕𝐶

𝜕𝑏
 

                   =  
1

𝑆1

𝜕

𝜕𝑑
( 

𝜕𝐶

𝜕𝑏
)

𝜕𝑑

𝜕𝑆2
 

                   =  
1

𝑆1

𝜕2𝐶

𝜕𝑏 𝜕𝑑
 

1

𝑆2
 

 

 

 

Substitute one, two, three & four in forth equation 

  
 𝜕∝𝐶

 𝜕𝑡∝ + 
𝑆1 

2  𝜎1
2

𝜕𝑠1
2 (

𝜕2𝐶

𝜕𝑏2 −  
𝜕𝐶

𝜕𝑏
) +

 𝜎2

2

𝑆2
2

𝑆2
2 =  (

𝜕2𝐶

𝜕𝑑2 −
𝜕𝐶

𝜕𝑑
) +  𝜕𝑠1 .

1

𝑆1
 
𝜕𝐶

𝜕𝑏
  

+ 𝑟𝑆2 .
1

𝑆2
 
𝜕𝐶

𝜕𝑑
+  𝑃 𝑠1𝑠2 𝜎1𝜎2  

1

𝑆1𝑆2
  𝜎1𝜎2  

1

𝑆1 𝑆2
  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 = 0 

 

  
 𝜕∝𝐶

 𝜕𝑡∝ + 
𝜎1

2

2
 
𝜕2𝐶

𝜕𝑏2 +
𝜎2

2

2
 
𝜕2 𝐶

𝜕𝑑2 −
𝜎1

2

2

𝜕𝑝

𝜕𝑏
−

𝜎2
2

2

𝜕𝐶

𝜕𝑏
=  (

𝜕2

𝜕𝑑2 −
𝜕𝐶

𝜕𝑑
) 

+ 𝑟
𝜕𝐶

𝜕𝑏
+ 𝑟

𝜕𝐶

𝜕𝑑
+  𝑃 𝜎1𝜎2 −  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 = 0 

 

(𝑖𝑖) − − − − − −
𝜕2𝐶

𝜕𝑆1
2 =

1

𝑆1
2 −

𝜕2𝐶

𝜕𝑏2
−  

𝜕𝐶

𝜕𝑏
 

(𝑖𝑣) − − − − − −
𝜕2𝐶

𝜕𝑆1 𝜕𝑆2 
 

1

𝑆2
 

𝜕2𝐶

𝜕𝑏 𝜕𝑑
   

=
1

𝑠1
2 −

𝜕2𝑝

𝜕𝑢2
−   

𝜕𝑝

𝜕𝑢
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 𝜕∝𝐶

 𝜕𝑡∝ + 
𝜎1

2

2
 
𝜕2𝐶

𝜕𝑏2 +
𝜎2

2

2
 
𝜕2 𝐶

𝜕𝑑2  + (𝑟 
𝜎1

2

2
)

𝜕𝐶

𝜕𝑏
+  (𝑟 −

𝜎2 
2

2
) 

𝜕𝐶

𝜕𝑑
  

+𝑝 𝜎1𝜎2  
𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 = 0 

Here we need to use  substitution method 

𝑏 = 𝑙𝑛𝑆1 −  (𝑟 −  
1

2
 𝜎1

2)  𝑜 

𝑑 = 𝑙𝑛𝑆2 + (𝑟 −  
1

2
 √2

2
)  𝑜 

𝜕𝐶

𝜕𝑡
=

𝜕𝐶

𝜕𝑏
 
𝜕𝑏

𝜕𝑡
 

 

     

 
− 𝜕𝐶

𝜕𝑡
=

𝜕𝐶

𝜕𝑏
 (𝑟 −

1

2
 𝜎1

2) 

𝜕𝐶

𝜕𝑡
=

𝜕𝐶

𝜕𝑑
 
𝜕𝑑

𝜕𝑡
 

                                                                          

 ----------(vii) 

 

From six & seventh equation fifth one becomes. 

 𝜕∝𝐶

 𝜕𝑡∝
+  

𝜎1
2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 𝐶

𝜕𝑑2
−

𝜕𝐶

𝜕𝑡
+

𝜕𝐶

𝜕𝑡
+ +𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 = 0 

  

----------(A) 

 

Subject to: 

 𝐶(𝑏, 𝑑, 𝑜) = max  ( 𝑤1 𝑒𝑏 +  𝑤2 𝑒𝑑 , 0)  ----------(viii) 

Therefore, equation (8) is a simplified European style ; the pricing model of two stock options 

Fractional order Black-shole P.D.E 

Implement sumudu transform on eight equation 

 

 

 

𝑏−∝ 𝑆 𝐶 −  𝑏−∝ (𝑏, 𝑑, 𝑜) = −𝑠 [ 
𝜎1

2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝜎2
2

2
 

𝜕2 

𝜕𝑑2
𝐶 + 𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 = 0 

 𝑆 𝐶  −  𝐶 (𝑏, 𝑑, 𝑜) = −𝑏∝𝑠 [ 
𝜎1

2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 𝐶

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 ] 

𝑆 𝐶  =  𝐶 (𝑏, 𝑑, 𝑜) − 𝑏∝𝑠 [ 
𝜎1

2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 𝐶

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 − − − − − (ix) 

𝜕𝐶

𝜕𝑡
=  

𝜕𝐶

𝜕𝑏
 (𝑟 −  

1

2
 𝜎1

2) 

𝜕𝑝

𝜕𝑡
=  

𝜕𝐶

𝜕𝑑
 (𝑟 −  

1

2
 𝜎1

2) 

 𝜕∝𝐶

 𝜕𝑡∝
+  

𝜎1
2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝑟2
2

2
 
𝜕2 𝐶

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 = 0 

 

𝑠 [ 
 𝜕∝𝐶

 𝜕𝑡∝
] = − 

𝜎1
2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 𝐶

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 = 0 
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Implement inverse samudu transform on -----------(ix)  

𝐶 = 𝑠−1 𝐶 (𝑏, 𝑑, ∞) 𝑠−1 [ 𝑏∝𝑠 [ 
𝜎1

2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 𝐶

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 

𝐶  (𝑏, 𝑑, 𝑜) = 𝐶 (𝑏, 𝑑, 𝑜) 𝑠−1 [ 𝑏∝𝑠 [ 
𝜎1

2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 𝐶

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶 − − − − − −(x) 

with simplification # 14 

𝐼∝ ℎ  (𝑚, 𝑛, 𝑜) = 𝑠−1[𝑏∝𝑠ℎ  (𝑚, 𝑛, 𝑜)]  

Implement Integral property of Sumudu transform on  --------------------  (x) 

𝐶  (𝑏, 𝑑, 𝑜) = 𝐶(𝑏, 𝑑, 𝑜)  𝐼∝ [ 
𝜎1

2

2
 
𝜕2𝐶

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 𝐶

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2𝐶

𝜕𝑏 𝜕𝑑
−  𝑟𝐶]  − − − − − (ix) 

Sumudu transform showing solution of P.D.E by utilizing equation nine in type of infinite convergent series 

as mention here.  

𝐶0  (𝑏, 𝑑, 𝑜) = 𝐶 (𝑏, 𝑑, 𝑜) ∑
ℎ𝑗(𝑚, 𝑛)𝑡𝑗∝

Γ(1 + 𝑗∝)

∞

𝑗=0

   

Where 𝐶  (𝑏, 𝑑, 𝑜) = ℎ0 (𝑏, 𝑑) =  ℎ0 (𝑠𝑎𝑦) 

𝐶𝑛+1  (𝑏, 𝑑, 𝑜) =  ∑
ℎ𝑗 𝑜𝑗∝

Γ(1 + 𝑗∝)

∞

𝑗=0

   

𝐶  (𝑏, 𝑑, 𝑜) = 𝐶  (𝑏, 𝑑, 𝑜) + ∑
ℎ𝑗(𝑚, 𝑛) 𝑜𝑗∝

Γ(1 + 𝑗∝)

∞

𝑗=1

   

be the European call option price solution at time t. 

where 

𝐶 (𝑏, 𝑑, 𝑜) =  ℎ0 

ℎ1 = − [ 
𝜎1

2

2
 
𝜕2ℎ0

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 ℎ0

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2ℎ0

𝜕𝑏 𝜕𝑑
−  𝑟ℎ0] 

ℎ2 = − [ 
𝜎1

2

2
 
𝜕2ℎ1

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 ℎ1

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2ℎ1

𝜕𝑏 𝜕𝑑
−  𝑟ℎ1] 

 

ℎ3 = − [ 
𝜎1

2

2
 
𝜕2ℎ2

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 ℎ2

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2ℎ2

𝜕𝑏 𝜕𝑑
−  𝑟ℎ2] 

┆ 

ℎ𝑛+1 = − [ 
𝜎1

2

2
 
𝜕2ℎ𝑛

𝜕𝑏2
+

𝜎2
2

2
 
𝜕2 ℎ𝑛

𝜕𝑑2
+ 𝑝 𝜎1𝜎2  

𝜕2ℎ𝑛

𝜕𝑏 𝜕𝑑
−  𝑟ℎ𝑛] 
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Time Fractional B.S Equation for Two Stocks  

Example 1: (for European Call Option) 

Data: 

𝑆1 = Cost in $ of asset 1. 

𝑆2 = Cost in $ of asset 2. 

Table 1.1.  Data of cost of asset 1 and 2. 

𝑆1 20 40 70 100 150 

𝑆2 50 80 120 180 200 

Condition initially we consider: 

C(𝑆1, 𝑆2, 𝑜) =Max(𝑒𝑆1 + 2𝑒𝑆2 − 80, 0) 

The asset 1 practical cost = Rs.80 

The asset 2 practical cost= Rs.20 

The largest practical cost for = eighty PKR 

For european call option. 

Time for practical collection = 8 months 

∝ = 0.005   

S.D of asset  1 = 𝜎1    = 40 % 

S.D of asset  2 = 𝜎2    = 25 % 

Section of asset 1 =  𝑤1 = 2&  Section of asset 2 =𝑤2=2 

Risk free rate of return = 8% 

Correlation coefficient between asset 1 and asset 2= 75% 

by using Matlab, we solve the above problem then the cost of European call  option is mentioned below:  

C(𝑆1, 𝑆2, 0) = 1.1 exp (𝑆1)  + 2.13  exp (𝑆2).  - 86.9 

CALL OPTION COSTS 

Table 1.2.  Call option costs of asset 1 and 2. 

S1 
 20 40 70 100 150 

SS2 

50 42 62 93 124 175 

80 107 127 158 189 240 

120 193. 214 245 275.9 327.28 

180 323.57 344.12 374.94 405.77 457.15 

200 366.86 387.41 418.23 449.06 500.43 

 



Pricing Options with Modified Time-Fractional BS. Equation and with Samudu Transform Volume 3, No. 2, 2021 

ISSN (Print): 2708-4051 ISSN (Online): 2708-406X 
                     

209  RADS Journal of  Business Management  

 

Example 2: 

Option type: we need to consider the following data. 

𝑆1 = asset 1 cost in $. 

𝑆2 = asset 2 cost in $ 

Table 1.3.  Data of cost of asset 1 and 2. 

𝑆1 20 40 70 100 150 

𝑆2 50 80 120 180 200 

 

First Condition:   P(𝑆1, 𝑆2, 0) = 𝑀𝑎𝑥((60 − 3sin𝜋𝑠1 − 5𝑐𝑜𝑠𝜋𝑠2) , 0 ) 

asset 1 practical cost = 60 

asset 2 practical cost = 20 

The largest practical cost = Rs.60 

Time for practical collection = Two months 

∝ = 0.755   

s.d of asset  1 = 𝜎1    = 45 % 

s.d of asset  2 = 𝜎2    = 85 % 

Section of asset 1  =  𝑤1 = 3 &  section of asset 2 =𝑤2=5 

Risk free rate of return = 03% 

asset 1 and asset 2 correlation= 65%    

 

by using Matlab, we solve the above problem then the cost of option is mentioned below: 

P(𝑺𝟏, 𝑺𝟐, 𝟎) =27.5 cos(3.1 .𝑺𝟐) - 2.1 cos(3.14. 𝑺𝟏) - 1.5 sin(3.142. 𝑺𝟏) -32.9 sin(3.14. 𝑺𝟐)+ 60.5 
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Put Option Prices 

 

Table 1.4. Option prices of asset 1 and 2. 

S1 
 20 40 70 100 150 

S2 

50 98.861 96.764 94.274 96.115 98.926 

80 43.341 41.244 38.754 40.595 43.406 

120 20.404 18.307 15.817 17.658 20.469 

180 57.17 55.072 52.583 54.424 57.235 

200 71.267 69.17 66.68 68.521 71.332 

 

Example 3: (European call option) 

Data: 

𝑆1 = Cost of asset 1 in $. 

𝑆2 = Cost of asset 2 in $ 

Table 1.5. Data of cost of asset 1 and 2. 

𝑆1 20 40 70 100 150 

𝑆2 50 80 120 180 200 

I.C:   C(𝑆1, 𝑆2, 0) = 𝑀𝑎𝑥((2𝑆1
3 + 5𝑆2

2) , 0 ) 

The practical cost of asset 1 = Sixty 

The practical cost of asset 2 = Ninety 

The largest practical cost for = Ninety 
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Time for practical collection = two months 

∝ = .125 

s.d of asset  1 = 𝜎1    = 40 % 

s.d of asset  2 = 𝜎2    = 65 % 

Section of asset 1 = 𝑤1 = 2 & section of asset 2 = 𝑤2 = 5 

Risk free rate of return = 07% 

asset 1 and asset 2 correlation= 85%    

After solving the above problem then the cost of option is mentioned below:  

                                                                       C(𝑺𝟏, 𝑺𝟐, 𝒐)= 2.2 𝑺𝟏
𝟑 + 5.4  𝑺𝟐

𝟐 - 99.8 

Table 1.6. European Call option of cost of asset 1 and 2. 

S1 
 

20 40 70 100 150 

S2 

50 40.648 88.334 142.39 185.17 242.47 

80 60.194 107.88 161.94 204.71 262.02 

120 78.847 126.53 180.59 223.36 280.67 

180 99.157 146.84 200.9 243.67 300.98 

200 104.71 152.39 206.45 249.22 306.53 

 

 

Example 4: (European put option) 

Data: 

𝑆1 = Cost of asset 1 in $. 

𝑆2 = Cost of asset 2 in $ 
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Table 1.7. European put option of asset 1 and 2. 

𝑆1 20 40 70 100 150 

𝑆2 50 80 120 180 200 

IC:   C(𝑆1, 𝑆2, 𝑜) = 𝑀𝑎𝑥(2(𝑥2+𝑦2)- ln(y)+ln(x),0) 

Largest practical cost for = Rs2.(𝑥2+𝑦2) 

Time for practical collection = Five months 

∝ = .125 

s.d of asset  1 = 𝜎1    = 40 % 

s.d of asset  2 = 𝜎2    = 20 % 

section of asset 1  =  𝑤1 = 1&  section of asset 2 =𝑤2=1 

Risk free rate of return = 8% 

asset 1 and asset 2 correlation= 75%    

by using Matlab, we solve the above problem then the cost of option is mentioned below: 

p(𝑆1, 𝑆2, 𝑡)= 2.2 .𝑥2- 1.1 ln(y) - 1.1 ln(x) + 0.1 /𝑥3 

+0.145 /𝑥6 + 1.23 /𝑥9 + 2.2 𝑦2+ 0.05 /𝑦2+ 0.1 /𝑦6 + 0.3 /𝑦9 -  49 

put -option prices 

Table 1.8. Put Option of asset 1 and 2. 

S1 
 

20 40 70 100 150 

 

 

S2 

50 28.452 46.868 60.826 68.965 77.391 

80 31.964 52.15 67.538 76.588 86.049 

120 34.994 56.708 73.328 83.164 93.519 

180 38.025 61.265 79.119 89.74 100.99 

200 38.812 62.45 80.623 91.449 102.93 
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Example 5: 

Data: 

𝑆1 = Cost of asset 1 in $. 

𝑆2 = Cost of asset 2 in $ 

Table 1.9. Data of cost of asset 1 and 2. 

𝑆1 20 40 70 100 150 

𝑆2 50 80 120 180 200 

IC:   p(𝑆1, 𝑆2, 0) = 𝑀𝑎𝑥(-5 . Sin(x)-8.y+5.x.y, x , 0) 

The largest practical cost for = Rs. 25.x.y 

Time for practical collection = Five months 

∝ = .125 

S.D of asset  1 = 𝜎1    = 40 % 

S.D of asset  2 = 𝜎2    = 20 % 

Section of asset 1  =  𝑤1 = 1&  section of asset 2 =𝑤2=1 

Risk-free-rate = 8% 

asset 1 and asset 2 correlation= 75%    

by using Matlab, we solve the above problem then the cost of option is mentioned below: 

P(S1, S2, t)= 5.4 .x.y - 0.18.cos(x) - 5.4 .sin(x) - 8.6 y - 0.221 

put-option costs 

Table 1.10. Put option costs of asset 1 and 2. 

S1  
20 40 70 100 150 

 

S2 

50 50.18 59.961 69.4 76.156 84.502 

80 58.571 68.353 77.8 84.548 92.894 

120 66.592 76.374 85.8 92.568 100.91 

180 75.335 85.117 94.5 101.31 109.66 

200 77.725 87.507 96.9 103.7 112.05 
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CONCLUSION 

According to the above discussion and graphical examples, it is concluded that the model of BS PDE can be 

considered as a solid tool for prediction of option pricing. The use of the Samudu Transform has decreased the 

handling time of the equations. The defined instances also appeared as the effortlessness, productivity, and 

reliability of the proposed strategy. This demonstrates that Samudu-Transformation provides a simple and 

time-effective solution for the e-commerce industry. 
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